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Linear viscoelasticity of hard sphere colloidal crystals from resonance detected
with dynamic light scattering
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We present measurements of the high-frequency shear modulus and dynamic viscosity for nonaqueous hard
sphere colloidal crystals both in normal and microgravity environments. All experiments were performed on a
multipurpose PHaSE instrument. For the rheological measurements, we detect the resonant response to oscil-
latory forcing with a dynamic light scattering scheme. The resonant response for colloidal crystals formed in
normal and microgravity environments was similar, indicating that the bulk rheological properties are unaf-
fected by differing crystal structure and crystallite size within the experimental error. Our high-frequency shear
modulus seems reasonable, lying close to Frenkel and Ladd’s predictions@Phys. Rev. Lett.59, 1169~1987!#
for the static modulus of hard sphere crystals. Our high-frequency dynamic viscosity, on the other hand, seems
high, exceeding Shikata and Pearson@J. Rheol.38, 601~1994!# and van der Werffet al.’s measurements@Phys.
Rev. A 39, 795 ~1989!# on the high-frequency dynamic viscosity for metastable fluids. The measurements are
in the linear regime for the shear modulus but may not be for the dynamic viscosity as Frithet al. @Powder
Technol.51, 27 ~1987!# report that the dynamic viscosity passes through a maximum with strain amplitude.
@S1063-651X~99!08708-5#

PACS number~s!: 82.70.Dd, 83.50.Fc
g
a
io
d
a

ra
a

er
io
d.
u

ta
fo
te

d
e

fro
is

e
er
a
ys
ta

ll
ble
ls.
dal
r to
low,
nt a
to

, we
ince
eres,
ce-
nts
ure-
av-
94.
and

on
ues

dal
ard
lloi-
for

om
r re-

e-
a-
I. INTRODUCTION

Concentrated colloidal dispersions occur in a wide ran
of everyday products such as paper, paints, plastics, so
medicines, and ceramics. The simplest colloidal dispers
consists of hard spheres, which interact through hydro
namic and Brownian forces but feel no direct force before
infinite repulsion at contact. The hard sphere phase diag
including the disorder-order transition, has been well est
lished @1#, as has the rheology in the dilute fluid phase@2#.
Many-body interactions, however, complicate the und
standing of the transport properties at higher concentrat
in both disordered/metastable fluids and the ordered soli

Previous studies examined the rheological properties
der both steady@3–5# and oscillatory shear@6–9# for hard
sphere fluids, below the freezing transition and in the me
stable region above. Many rheological studies also exist
colloidal crystals, but focus on aqueous dispersions affec
by electrostatic forces under both steady@10,11# and oscilla-
tory shear@12–15#. The main difficulty in determining the
elasticity is that colloidal crystals are orders of magnitu
weaker than conventional atomic solids and, thus, easily m
under shear. The weakness of the elastic forces results
the low number density, which for our colloidal crystals
;4 per cubic micron compared with;1 per cubic angstrom
for atomic solids. The static elastic constants reflect the
ergy density and may be estimated as the interparticle en
times the number density. At room temperature, the interp
ticle energies are comparable for colloidal and atomic cr
tals and, therefore, the elastic constants for colloidal crys
PRE 601063-651X/99/60~2!/1988~11!/$15.00
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should be;1012 times weaker. Oscillatory shear of sma
amplitude slightly perturbs the microstructure and is suita
for measuring the linear viscoelasticity of colloidal crysta

This work extends rheological measurements for colloi
crystals to nonaqueous hard sphere dispersions. Simila
previous studies on aqueous dispersions, described be
we excite shear waves in our samples and then impleme
novel detection scheme using dynamic light scattering
measure the resonant response. From that information
can extract the shear modulus and dynamic viscosity. S
no other measurements exist for nonaqueous hard sph
we compare our results with the available theory for a fa
centered cubic~fcc! hard sphere crystal and measureme
on the metastable hard sphere fluid. In addition to meas
ments in the lab, experiments were performed in microgr
ity on NASA space shuttle missions STS-83 and STS-
We can therefore compare the results obtained in gravity
microgravity environments.

The first few sections of this work provide background
dynamic rheological measurements, resonant techniq
used to determine the viscoelasticity of charged colloi
crystals, and predictions of the viscoelastic properties of h
sphere fcc crystals. We then describe our hard sphere co
dal crystals, experimental method, and theoretical model
determining the shear modulus and dynamic viscosity fr
the measured resonant response. Finally, we present ou
sults and end with a discussion.

II. DYNAMIC RHEOLOGICAL MEASUREMENTS

In equilibrium, Brownian motion and the hard sphere r
pulsion determine the particle distribution. A weak oscill
1988 © 1999 The American Physical Society
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PRE 60 1989LINEAR VISCOELASTICITY OF HARD SPHERE . . .
tory shear perturbs the distribution from equilibrium a
generates elastic and dissipative responses. The elas
arises from the interparticle potential and Brownian motio
which counteract the external flow field and tend to rest
the microstructure to equilibrium. The dissipation origina
from viscous stresses in the medium surrounding the
ticles and relaxation of the microstructure.

For small amplitude oscillations with frequencyv, the
local stress and strain are related through the complex s
modulus

G* ~v!5 ivh* ~v!5G8~v!1 iG9~v!, ~2.1!

whereh* (v) is the complex shear viscosity andG8(v) and
G9(v) characterize the components of the stress in ph
and out of phase with the applied strain, respectively. At z
frequency, the stress for a fluid is completely in phase w
the applied rate of strain and determines the low shear
iting viscosityho ,

lim
v˜0

G9~v!

v
5ho . ~2.2!

Crystals have long-range positional order, which results
Bragg rings and a finite static shear modulusGo ,

lim
v˜0

G8~v!5Go , ~2.3!

which vanishes at the melting transition. These features
tinguish crystals from fluids, which have no long-range p
sitional order. In the high-frequency limit, the in- and out-o
phase components give the high-frequency dyna
viscosityh 8̀ and high-frequency shear modulusG8̀ , respec-
tively,

lim
v˜`

G9~v!

v
5h 8̀ , ~2.4!

lim
v˜`

G8~v!5G8̀ . ~2.5!

PresumablyG8̀ and h 8̀ both diverge for monodispers
spheres at close packing (f50.74). The loss tangent tand
5G9/G8 shows the transition from viscous (tand.1) to
elastic (tand,1) behavior.

A. Rheology of charged colloidal crystals

Previous studies on the viscoelasticity of colloidal cryst
center on aqueous polystyrene lattices. Ordering of aque
dispersions depends on the number density, particle size
electrolyte concentration. One of the first measurement
the bulk modulus of colloidal crystals by Crandall and W
liams@16# detected the gravitational compression of the cr
tal lattice as a function of height for dilute dispersions
Bragg scattering and extracted Young’s modulus. Becaus
the extremely long time required to reach equilibrium f
gravitational compression and the desire to determine
shear modulus rather than the bulk modulus, other gro
@17,18# excited standing shear waves in a cylinder filled w
opaque dispersions and detected the amplitude and p
ity
,
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from Kossel rings to construct a resonant curve. Joanny@19#
solved the equation of motion to obtain the resonance
quencies and also determined that only low-frequency sh
modes propagate in a cylinder of charged colloidal cryst
Knowing this, Dubois-Violetteet al. @17# deduced the shea
modulus and dynamic viscosity from their resonant cur
Mitaku et al. @20,21# employed a slight variation on thi
technique, detecting the resonances mechanically instea
from Kossel rings. Many investigators@12,13,22–24# used
custom rheometers with mechanical detection schemes
fixed frequency to determine the increase in the shear mo
lus of colloidal crystals with increasing concentration a
decreasing particle size and electrolyte concentration.

van der Vorstet al. @15,25# determined the frequency de
pendence of the storage and loss modulus of charged co
dal crystals with particle radiusa52.4531027 m and
nearest-neighbor distancesr nn between 2.7a and 7.3a using a
variety of rheometers. These measurements cover dim
sionless frequencies (Lmr nn)

2v/Do from 1.431024 to
1.33105, scaled with the Lindemann criterion at meltin
Lm50.15 and the Stokes-Einstein diffusion coefficientDo .
For (Lmr nn)

2v/Do,0.9, the storage modulus for volum
fractionsf.0.10 is nearly constant, only increasing 10% f
dimensionless frequencies from 1.431024 to 0.9, while the
loss modulus passes through a minimum and is at leas
order of magnitude smaller (tand,1.0). At higher dimen-
sionless frequencies@for f50.2, (Lmr nn)

2v/Do.9.0#, the
storage modulus remains close to the static modulus but
large error bars, while the loss modulus increases line
with frequency and eventually exceeds the storage modu
as in the fluid case. The viscosity in the high-frequency lim
is approximately the medium viscosity. Scaling their resu
and others for the static shear modulus with volume fracti
particle radius, surface charge density, and electrolyte c
centration yields a master curve with some scatter. Stor
and loss moduli of Blomet al. @26# follow similar trends, but
indicate a stronger frequency dependence for the sto
modulus.

Palberget al. @27# accurately (DG<2%) and nondestruc
tively determined the shear modulus of charged colloi
crystals by detecting resonant shear oscillations with tim
resolved static light scattering. With transparent samp
they determined the morphology and then placed a posit
sensitive detector on part of a Bragg ring and measured
change in Bragg angle due to the distortion of the lattice.
small-amplitude oscillations, the periodic distortion of th
lattice spacing reflects the response of the crystallite to
forcing. They found the shear modulus to be sensitive
different bcc crystal morphologies; at 0.5mmol/l salt, G8
50.34 Pa for an unoriented polycrystal,G850.30 Pa for
an unoriented polycrystalline core with twinned monocrys
outer annulus, andG850.23 Pa for an oriented polycrysta
Theories based on electrostatic interactions agree with m
surements of the shear moduli of these colloidal crystals
the various resonant techniques@28–30#. Thus, understand
ing of the elasticity of charged colloidal crystals is well a
vanced.

B. Theory on rheology of hard sphere colloidal crystals

Predictions of the viscoelasticity of hard sphere cryst
are limited. Frenkel and Ladd@31# computed the static elas
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1990 PRE 60PHAN, LI, RUSSEL, ZHU, CHAIKIN, AND LANT
tic constantsCi j from molecular-dynamics simulations o
slightly distorted unit cells at several concentrations and t
averaged over all orientations to obtain the static sh
modulus for an isotropic polycrystalline solid,

Go5
1

5
@C112C1213C44#. ~2.6!

Nunan and Keller@32# calculated the effective viscosit
of periodic arrays of spheres in an incompressible Newton
fluid with viscositym. For a cubic lattice, the effective vis
cosity tensor involves just two parameters,a and b, which
are functions of concentration and the lattice geometry. T
orientational averaged effective viscosity, which correspo
to the high-frequency limit for a perfect crystal, follows a

h 8̀ 5mF11
1

5
~2a13b!G . ~2.7!

Our particles undergo Brownian fluctuations about the lat
point, whereas Nunan and Keller assumed the particles t
fixed on the lattice, reducing the radial distribution functi
g(r ) at contact to zero. As evidenced by the osmotic pr
sure, which is proportional tog(r ) at contact, a significan
number of nearest-neighbor interactions exist, implying t
Eq. ~2.7! should represent a lower bound onh 8̀ for a colloi-
dal crystal.

III. RESONANT BEHAVIOR

Similar to the investigations on charged colloidal crysta
we exploit resonant behavior to determine both the sh
modulus and dynamic viscosity of our hard sphere colloi
crystals. Our dispersions have inertia~density!, damping~dy-
namic viscosity!, and recovery~shear modulus!, the combi-
nation of which governs the amplitude of the response r
tive to the amplitude of the forcing. For a small dynam
viscosity, the amplitude of the response becomes large
series of discrete~resonant! frequencies and characterizatio
of the first resonance suffices to determine the dynamic
cosity and shear modulus. Instead of measuring the cha
in the Bragg angle as Palberget al. @27# did or determining
the amplitude and phase from Kossel rings as did Dub
Violette et al. @17# and Joanicotet al. @18#, we detect the
resonant response with dynamic light scattering, since
decay of the autocorrelation function also reflects the am
tude of the response.

A. PMMA-PHSA spheres

Ottewill and his group at the University of Bristol synth
sized and graciously supplied samples of poly-~methyl meth-
acrylate! ~PMMA! spheres with a grafted comblike layer
poly-~12-hydroxy stearic acid! ~PHSA! chains that we dis-
persed in a refractive index matching mixture of 1,2,3
tetrahydronapthalene~tetralin, n51.541) and 1,2,3,4-cis-
decahydronapthalene~decalin, n51.4815). Tetralin is a
good solvent for PMMA and swells the particles, signi
cantly increasing the size@33#. Index matching suppresse
the van der Waals forces and is necessary for perform
light scattering, but the associated swelling increases the
fective hard sphere volume fractionf. The particle diameter
n
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from dynamic light scattering on a dilute sample is 2a
5655615 nm. Previous measurements of the equation
state demonstrate them to be near hard spheres@34# with the
effective hard sphere size determined by matching the
served disorder-order transition to the hard sphere free
transition. Polydispersity affects the freezing transition@35#,
but the error in determining the concentration (60.007) ex-
ceeds the correction for the 5% polydispersity of o
samples. Thus, the effective volume fractions reported h
do not include the correction for polydispersity.

Index matching does not lead to density matching;
resulting sedimentation can affect both the structure and
of the crystallites@36#. Face-centered cubic~fcc! is entropi-
cally favored over hexagonal close packing~hcp!, a conclu-
sion advanced by Woodcock@37# on the basis of simulations
and confirmed by Bolhuiset al. @38# through further analy-
sis. Under normal gravity, hard sphere dispersions crysta
into a mixture of hcp and fcc packing with a bias towards f
@39#, whereas under microgravity, only random hexago
close packing~rhcp! structure has been detected@36#. The
structural difference may result from gravity-induce
stresses. In addition, samples in the coexistence region u
microgravity form larger crystallites than in normal gravi
and also exhibit dendritic growth@40#. Both crystal structure
and crystallite size may affect the rheological properties, m
tivating a comparison of results obtained in normal and m
crogravity environments.

B. Experimental setup

A multipurpose light scattering instrument shown in Fi
1 was designed by NASA Lewis Research Center, ADF C
poration, NYMA Corporation, Titan Spectron, and Princet
University for the Physics of Hard Sphere Experiments
PHaSE@41#. This instrument performs both static and d
namic light scattering and also oscillates the sample for
termining the rheological properties. Specially design
glass sample cells, whose refractive index (n51.511)
matches that of our PMMA-PHSA suspensions, consist
two pieces, a face plate and a hemispherical cap. The cap
a parabolic skirt and a cylindrical cavity, 1.0 cm in radi
and 1.0 cm high, that requires approximately 3 mL
sample. The face plate is screwed into the cap to seal
sample. To allow for expansion and contraction due to te
perature fluctuations, we incorporate a rubber diaphragm
the sample cell. All surfaces of the sample cell are hig
polished and coated with antireflective material.

A 100 mW Adlas diode laser Model DPY 313II supplie
a l5532 nm green beam, which is split into two, one f
static light scattering and the other for dynamic. Each be
is routed with Newport mirrors and holders into single mod
polarization maintaining~PM! fiber optic cables terminated
on both ends with a quarter-pitch gradient index~GRIN!
lens. The GRIN lens restricts thek vector of the collected
light and focuses the beam to a 100mm Gaussian waist. The
static launch fiber couples with a collimator that delivers
wide beam axially through the sample cell’s face plate. T
diffracted intensity from the sample is focused without d
tortion by the hemispherical cap onto a fluorescently coa
spherical screen. A high-resolution charge coupled dev
~CCD! captures a 103231312 pixel black and white image
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FIG. 1. Schematic diagram of the PHaSE i
strument. This instrument performs static and d
namic light scattering and also oscillates th
sample cell sinusoidally to determine the rheo
ogy. The thick black and gray lines refer to th
dynamic and static laser beams, respectiv
( , incident beam; , scattered beam!.
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of the screen containing 2D diffraction images from 0.5 °
60 °. For a crystal, the intensity will constructively interfe
and result in Bragg rings with positions and intensities t
reflect the crystal structure.

The dynamic launch fiber is mounted on a precision st
for directing the beam onto the parabolic skirt and throu
the center of the cell. The beam is totally internally reflec
from the skirt radially through the sample; therefore, t
beam from the dynamic launch fiber is perpendicular to t
from the Bragg launch fiber. The two single-mode pick-
fibers, 180° apart, are attached to a motorized stage, allow
the scattered intensity to be collected at anglesu510°
2169° with 0.1° resolution. A supersensitive avalanc
photodiode detector~APD! converts the scattered intensi
into binary data from which two Brookhaven BI9000 co
relators compute autocorrelation functions.

The sample cell is mounted into a circular holder, who
outer edge has ridges that grip a rubber belt that also h
the gear of a PMI ServoDisc dc motor. The motor transm
sinusoidal oscillations at frequencies between 0.2 and 5
to the sample cell through the rubber belt. Because
samples crystallize and, thus, are nonergodic, we ensem
average by rotating the cell slowly (,1° in a minute!
through many configurations.

C. Viscoelastic solid cylinder in oscillatory shear

Our rheological measurement is nonviscometric, imp
ing periodic oscillations on the sample cell and detecting
response that propagates through the viscoelastic mediu
the center of the cell. Hence the measured response mu
compared with predictions from a faithful model in order
identify the shear modulusG8 and dynamic viscosityh8.
This requires solving the equations of motion for a viscoel
tic solid contained in a circular cylinder of radiusR and
heightL that rotates periodically with frequencyv and am-
plitude g about its axis. In standard cylindrical coordinate
t
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the only displacement excited by this oscillatory shear is
the azimuthal oru direction, i.e.,uu , and pressure gradient
are zero, leaving

r
]2uu

]t2 5S G81h8
]

]t D F ]

]r S 1

r

]~ruu!

]r D1
]2uu

]z2 G , ~3.1!

wherer is the dispersion density,t is the time, andr andz
are the radial and axial positions within the cylinder. Th
balance between inertia and mechanical stresses determ
the propagation of motion into the sample from the boun
aries, which rotate as a rigid body. In the low-frequency lim
one expects solid body rotation of the entire sample, while
very high frequency inertia should maintain the bulk of t
sample at rest with deformation confined to boundary lay
near the container walls.

To simplify the analysis, we subtract the solid body ro
tion from the actual displacement and separate the oscilla
dependence on time asuu5(ūuR1gr )eivt, so that the no-
slip boundary conditions at the container walls will be h
mogeneous forūu . The behavior then depends on the dime
sionless position,r̄ 5r /R andz̄5z/R, the reduced frequency

V5vRA r

G8
, ~3.2!

the reduced viscosity

z5
h8

RArG8
, ~3.3!

and a convenient combination of the two,

s5A V2

11 i zV
. ~3.4!
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The dimensionless, time-independent equation forūu ,

2s2~ ūu1g r̄ !5
]

] r̄
S 1

r̄

]~ r̄ ūu!

] r̄
D 1

]2ūu

] z̄2
, ~3.5!

is subject to the no-slip and symmetry boundary conditio

at z̄50, ūu50,

at z̄5h, ūu50,

at r̄ 51, ūu50,

at r̄ 50, ūu50,

whereh5L/R is the aspect ratio of the container.
We separate variables

ūu5 (
n51

`

Rn~ r̄ !Zn~ z̄!, ~3.6!

reducing the partial differential equation to two ordinary d
ferential equations, and obtain first-order Bessel function
the first and second kind forRn( r̄ ) and hyperbolic functions
for Zn( z̄) with

Rn~ r̄ !5AnJ1~Gnr̄ !1BnY1~Gnr̄ !. ~3.7!

The third and fourth boundary conditions yieldBn50 and
J1(Gn)50 and orthogonormality yields the homogeneo
eigenfunction

Rn~ r̄ !5
A2

J2~Gn!
J1~Gnr̄ !. ~3.8!

Solving thez-dependent ODE,

(
n51

`

r̄ Rn

]2Zn

] z̄2
5 (

n51

`

ZnF2
]

] r̄
S r̄

]Rn

] r̄
D 2S s2r̄ 2

1

r̄
DRnG

2s2g r̄ 2, ~3.9!

by expanding the nonhomogeneous term in the eigenfu
tionsRn and applying the first two boundary conditions lea
to

Zn~ z̄!5 (
n51

` A2s2g

Gn
S 12coshlnz̄1

~coshlnh21!

sinhlnh
sinhlnz̄D

~3.10!

with ln5AGn
22s2.

Combining ther-dependent andz-dependent solutions re
sults in the full solution

uu

gR
5 r̄ eivt1 (

n51

`
2s2J1~Gnr̄ !

ln
2GnJ2~Gn!

F12coshlnz̄

1
~coshlnh21!

sinhlnh
sinhlnz̄Geivt. ~3.11!
of

s

c-

A more convenient form results from the identity

r̄ 1 (
n51

`
2s2J1~Gnr̄ !

ln
2GnJ2~Gn!

5
J1~s r̄ !

J1~s!
~3.12!

as

uu

gR
5

J1~s r̄ !

J1~s!
eivt1 (

n51

`
2s2J1~Gnr̄ !

ln
2GnJ2~Gn!

F ~coshlnh21!

sinhlnh
sinhlnz̄

2coshlnz̄Geivt. ~3.13!

We measure the amplitude of angular rotation at the c
ter of the cylinder (r̄ 50, z̄5h/2),

L~v!eivt[
1

g

]uu

]r
5F s

2J1~s!
2 (

n51

`
s2

ln
2J2~Gn!

3S 1

coshln

h

2
D Geivt, ~3.14!

with resonances defined by maxima inL. Fig. 2 shows a
typical response for a givenz, indicating three important
characteristics of the first resonance, the amplitudeL1, posi-
tion V1, and the width at half heightW1. The typical dimen-
sionless viscosity measured for our hard sphere crystals
dicates z50.10, which suppresses the higher-ord
resonances. The width is calculated relative to the maxim
amplitude minus one~an arbitrary baseline!. Knowing two of
these three characteristics specifies the shear modulus
dynamic viscosity of the dispersion.

In Fig. 3, we plot the amplitude, position, and width of th
first resonance for the finite cylinder (h51.0) as a function
of dimensionless viscosity. As expected, the amplitude of
first resonance decreases with increasing viscosity, while
position passes through a maximum and decreases and
width broadens. The extrema result from the second re

FIG. 2. Typical response to oscillatory shear from model w
frequency-independent rheological properties vs driving freque
at r 50, h51.0, andz50.10.
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PRE 60 1993LINEAR VISCOELASTICITY OF HARD SPHERE . . .
nance merging with the first, which prevents some values
the width from being obtained.

IV. DYNAMIC LIGHT SCATTERING

In dynamic light scattering, the detector measures the
stantaneous scattered intensityI (q,t)5E(q,t)E* (q,t), with
E(q,t) the scattered electric field andE* (q,t) its complex
conjugate, of a single fluctuating speckle at a wave vecto
magnitude

q5
4pn

l
sin

u

2
. ~4.1!

A correlator accumulates the intensity over short time p
ods and constructs a normalized scattered intensity auto
relation function

g2~q,t!5
^I ~q,0!I ~q,t!&

^I ~q,0!&2 , ~4.2!

where the angular brackets represent an ensemble ave
andt the delay time. To explicitly relateg2(q,t) to particle
positionsri(t), we invoke the Siegert relationship

g2~q,t!511Cg1
2~q,t!, ~4.3!

whereC5O(1) is an apparatus constant related to the ra
of the detector and coherence areas. The normalized
tered electric field autocorrelation functiong1(q,t) or the
coherent intermediate scattering function is given by

g1~q,t!5
^E~q,0!E* ~q,t!&

^I ~q,0!&

5
1

NS~q! (
i , j 51

N

^exp$ iq•@ri~0!2rj~t!#%& ~4.4!

with S(q) the static structure factor. The indices recogniz
potential coupling between particlesi and j directly through
the particle pair potential and indirectly through hydrod
namic interactions.

FIG. 3. The amplitude, position, and width at half peak height
the first resonance vsz for finite cylinder of a viscoelastic solid in
oscillatory shear atr 50 andh51.0.
r
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a

We measure the displacement of particles rotating w
the fluid along with the normal Brownian fluctuationsrj

d(t),

g1~q,t!5
1

NS~q! (
i , j 50

N

^exp$ iq•@ri~0!2rj
d~t!

2L~v!sinvtez3rj~0!#%&. ~4.5!

If the sample were a rigid solid withrj
d5rj(0) and L

51, g1(q,t) would be completely correlated at the inver
of the driving frequency orvt52p and would follow the
shape of the forcing, i.e., sinusoidal. Since our sample fl
tuates and deforms and we ensemble-average by superim
ing a slow rotation onto the oscillation, crystallites retu
close but not exactly to their original positions after o
oscillation andg1(q,2p/v),1. The rates of diffusion and
steady rotation for ensemble averaging are much slower
the oscillations and, therefore, affect the primary decay
shown in Fig. 4 very little. At times 1022103 longer where
vt52p, the peak representing the completion of a full o
cillation is evident in Fig. 5~a! but is highly attenuated by
these processes. Thus our primary interest lies in the de
relation of the signal by rotation at short times for whic
L(v)sinvt'L(v)vt@urj

d(t)2ri(0)u/urj(0)u, so that contri-
butions from Brownian motion and ensemble averaging
be ignored.

For small-amplitude oscillations, the intensity at a Bra
angle is essentially constant. The Bragg reflection domina
the autocorrelation function at this angle and suppresses
decay due to oscillatory shear. Off a Bragg angle, we
determine the decay of the autocorrelation function due
the sample response, though the intensity is much wea
Therefore, we measure the autocorrelation function at dif
ent driving frequencies at a scattering angle just off the m
Bragg peak and plot versusvt to determine the dependenc
of the rate of decay on frequency. The detector views
center of the sample, sensing the motion propagated inw
from the boundaries and, therefore, the bulk rheologi
properties of the whole sample. Table I summarizes the c
centrations and phases of our samples.

f

FIG. 4. A comparison of the autocorrelation function with for
ing at various frequencies ( , 0 Hz; h, 0.4 Hz;s, 0.6 Hz;n,
0.8 Hz; ,, 1.0 Hz;L, 2.0 Hz;1, 3.0 Hz;3, 4.0 Hz; and *, 5.0
Hz!. Note that the slow relaxation of the sample cannot significan
affect the rheological measurements.
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V. RESULTS

The arguments above lead us to expect the autocorrela
function to decay monotonically withL(v)vt, whereL(v)
is the frequency-dependent amplitude of rotation in the s
tering volume, i.e., the center of the cell, that reflects
viscoelastic properties of the crystal as illustrated by E
~3.14!. To deduce these properties from the measurem
requires extractingL(v) from the decay in the normalize

FIG. 5. Autocorrelation functions at driving frequencies b
tween 0.4 to 5.0 Hz in increments of 0.2 Hz are plotted with
delay time either not scaled~a! or scaled~b! to superimpose the
responses of sample 4 STS-83 atu515° to oscillatory shear. Note
that the decay at the two lowest frequencies (h, 0.4 Hz;s, 0.6 Hz!
is a bit broader than the others, which form a master curve a
scaling the delay time.
on

t-
e
.
nt

autocorrelation functions, e.g., in Fig. 5~a!, via two simple
steps. The first step is to superimpose the correlation fu
tions for each frequencyv i with t.0 onto that for the lowest
frequencyvo by plotting versusL(v i)v it/L(vo) with the
scale factorL(v i)/L(vo) chosen for this purpose. Since th
decay at the two lowest frequencies is a bit broader than
others @cf. the curves that fall below the other fo
L(v i)v it/L(vo),0.01#, we force the collapse atg221
50.5 @Fig. 5~b!#. The second and final step is to sele
L(vo), G8, andh8 to obtain the best possible superpositi
of L(v) versusv from the measurements with the predi
tions from Eq.~3.14!. This is relatively straightforward, be
cause the resonance frequency primarily determines
modulus with the amplitude or width of the resonance sett
the dynamic viscosity.

The response of sample 4 as a function of driving f
quency shown in Fig. 6 for measurements in normal grav
and microgravity environments clearly exhibits the result
this process. The resonance at 12.5 rad/s suggestsG8
>r(12.5R/5.1)250.56 Pa from~3.2! and Fig. 3, while the
peak amplitude of 3.3 indicates a dynamic viscosity ofh8
50.12RArG850.027 Pa s from Eq.~3.3! and Fig. 3. The
final values result from adjusting these estimates to bette
the full curve. Note that in Fig. 6 the theoretical model d
scribes the full experimental curve fairly well and samp
crystallized under gravity exhibit the same resonance as

er

FIG. 6. Resonant response of sample 4 STS-94 at various an
under gravity (,, KSC, u515°) and microgravity (h, STS-94,u
515 °; s, STS-94,u530°; n, STS-83,u515°) vs driving
frequency compared with the frequency-independent model wir
50, h51.0, andz50.135 ( ).
sity in
TABLE I. Sample descriptions and results for the high-frequency shear modulus and dynamic visco
both normal and microgravity environments.

Gravity Microgravity
Sample f Phase G8̀ a3/kT h 8̀ /m G8̀ a3/kT h 8̀ /m

2 0.505 coexistence 3.361.0 14.163.0
3 0.528 coexistence 4.061.0 15.663.9
4 0.552 crystal 5.860.8 18.865.8 5.860.8 18.864.3
5 0.575 crystal 9.863.0 24.567.9 9.462.0 24.165.2
6 0.599 crystal 11.663.6 28.8615
7 0.622 near glassy 18.166.0 44.5620
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microgravity samples, suggesting that the crystal struc
and crystallite size do not affect the bulk rheological prop
ties beyond the experimental error.

The model treats the crystal as a linear viscoelastic s
with constant viscosity and modulus, whereas nonlinea
often sets in at relatively low strains and even crystals
hibit relaxations that cause the moduli to vary with fr
quency. Thus before analyzing the rheological properties,
need to assess the linearity and the frequency regime of
measurements.

A. Linear regime

For most viscoelastic materials, the response beco
nonlinear above a strain amplitudeec beyond which the stor-
age modulus generally decreases. Belowec , in the linear
regime, Brownian fluctuations can restore the crystal str
ture, energy is stored, and the storage modulus remains
stant at a fixed frequency. Aboveec , the crystal structure is
deformed plastically, energy is dissipated, and the stor
modulus decreases.

Shikata and Pearson, Jones, and Frithet al. all checked
linearity on metastable hard sphere fluids. Shikata and P
son @6# report a linear response forec,0.1 for their disor-
dered dispersions of 12–450 nm diameter silica in glyce
and ethylene glycol mixtures forf50.3220.56. Joneset al.
@42# performed measurements on 49 nm diameter si
spheres in high boiling hydrocarbon medium and foundec
50.03 for f50.58620.667. For 475 nm PMMA-PHSA in
decalin, Frithet al. @43# determined thatec50.003 for f
50.624 and 0.02 forf50.595, indicating thatec decreases
with increasing concentration. They also noted that non
earity first becomes apparent in the loss modulus rather
the storage modulus, withG9 passing through a maximum

Our instrument imposed oscillations at a fixed amplitu
of 1.5° (g;0.026). With the known shear modulus and d
namic viscosity, we calculate the strain,

e~r !5gS ]uu

]r
2

uu

r D , ~5.1!

at the resonant frequency for sample 4 and find that
greatest strain occurs at the wall. The strain at the wal
frequency plotted in Fig. 7 for the same sample reache
maximum strain near the resonance frequency and does
exceed 0.10. Thus our measurements fall in the linear reg
according to Shikata and Pearson’s criterion but not Jone
Frith et al.’s measurements. Frithet al.may be the best com
parison because their particles most closely resemble o
but a crystal should tolerate greater strains than a disord
fluid before deforming plastically. Therefore, the critic
strain for the fluid only represents a lower limit for the cry
tal.

We do not perform a direct linearity check, but inste
take Bragg images before and after the rheology meas
ment~Fig. 8!. In the linear region, the oscillatory shear mo
is nondestructive. The angular averaged Bragg images
samples 3, 4, and 5 from STS-94 before and after the rh
ogy measurement are almost identical, suggesting that
measurement did not affect the structure of the suspen
and was in the linear regime. In fact, samples 4 and 5 s
re
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to have increased order, yielding higher intensity Bra
peaks after the measurement, possibly due to shear a
ment.

B. High-frequency regime

In an oscillatory shear, the frequency scales with
short-time self-diffusion coefficientDs

o(f) because, for
small departures from equilibrium, particles need only d
fuse a distance small relative to the lattice spacing to re
back to equilibrium. For fluid phases,Ds

o decreases with con
centration from the Stokes-Einstein valueDo at infinite dilu-
tion. Ottewill and Williams@44# employed 170 nm diamete
poly~vinyl acetate! spheres as tracers for 166 nm diame
PMMA-PHSA spheres in a mixture ofcis/trans-decalin to
find Ds

o(0.50)/Do50.20 and Ds
o(0.55)/Do50.15 for the

metastable fluid. Particles ordered onto a crystal lattice
more free to fluctuate than in a disordered fluid, soDs

o of a
crystal should exceed that of a metastable fluid at a fi
concentration. The dimensionless frequency atf50.55 and
v154p rad/s, a2v1 /Ds

o(f);27, suggests that the mea
surements lie near or in the high-frequency regime. Alter
tively, assuming

Ds
o~f!

Do
5

m

h 8̀ ~f!
~5.2!

for the crystal, which is not precise but is at least within
factor of 2, and employing the high-frequency viscosities
Nunan and Keller~1984! determines a lower bound o
(a2v1 /Do)(h 8̀ /m);22, just slightly less than the dimen
sionless frequency determined with the short-time s
diffusion coefficient. Thus, we cannot access the lo
frequency regime because of our large particle size.

C. Shear moduli

For hard spheres the dimensionless shear moduli, sc
on the thermal energy density asGa3/kT, should depend
only on f and the dimensionless frequencya2v/Do . Our
elastic moduliG8 ~Fig. 9 and Table I! are comparable to the

FIG. 7. The frequency dependence of the straine(R) with z
50.138 at the container wall for sample 4 STS-94 oscillating w
an amplitude of61.5° shows the greatest strain near the reson
frequency.
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static shear moduli calculated by Frenkel and Ladd@31# for a
fcc crystal and well below the high-frequency moduli fro
Lionberger and Russel’s nonequilibrium theory@45# and
Shikata and Pearson’s measurements@6# for the metastable
fluid. The static modulus is an equilibrium property that
unaffected by hydrodynamic interactions, unlike the hig
frequency modulus, which measures the instantaneous
sponse to a strain. Both hydrodynamic interactions and
nonequilibrium structure cause the high-frequency modu
to always exceed the static modulus. Our results seem
sonable, as they lie between the static modulus for a
crystal and the high-frequency modulus for the metasta
fluid. While our moduli lie just slightly above Frenkel an
Ladd’s predictions, the difference is not necessarily sign
cant as indicated by the error bars. Thus, our results a
qualitatively with van der Vorstet al.’s @15,25# measure-
ments on aqueous latex dispersions in not deviating m
from the static modulus, though at a relatively high fr
quency.

FIG. 8. Bragg scattering from samples 3~a!, 4 ~b!, and 5~c! on
STS-94 remains nearly the same before (n), during (s), and after
(,) the rheological measurement, suggesting that the rheolog
properties are obtained in the linear regime.
-
re-
e
s
a-
c
le

-
ee

h
-

D. Dynamic viscosity

The dynamic viscosity scaled by the solvent viscositym
~Fig. 10 and Table I! increases from about 14 to 44.5 fo
0.505<f<0.622. Our earlier estimates suggest the meas
ments to be in the high-frequency limit. Therefore, we
clude for comparison the high-frequency viscosities for
perfect fcc hard sphere crystal, calculated by Nunan
Keller @32#, and a disordered metastable hard sphere fl
measured by Shikata and Pearson@6# and van der Werffet
al. @7#. Brownian motion of particles about the lattice sites
our crystals causes closer interactions and should incr
the viscosity above the lower bound set by the perfect cr
tal, but not above the value for the disordered fluid. T

al

FIG. 9. The shear moduli of our colloidal crystals measured
gravity (s) and microgravity (d) and determined with frequency
independent rheological properties compared with measurem
and theory for the high-frequency moduli of the metastable fl
(n, Shikata and Pearson@6#; , Lionberger and Russel@45#!,

and Frenkel and Ladd’s prediction~@31#, ) for the static moduli
of a fcc crystal.

FIG. 10. The dynamic viscosity of our colloidal crystals me
sured in gravity (s) and microgravity (d) determined with
frequency-independent rheological properties compared with m
surements of the high shear (1, van der Werff and de Kruif@4#; 3,
Woods and Krieger@46#! and high-frequency (n, Shikata and Pear-
son @6#; ,, van der Werffet al. @7#! viscosities for the metastabl
fluid and Nunan and Keller’s theory~@32#, ) for the effective
viscosity of an unstrained fcc crystal.
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coincidence between our data and the high shear viscos
for disordered hard sphere fluids measured by van der W
and de Kruif@4# and Woods and Krieger@46# suggests tha
nonlinearity might be the culprit. However, we should fir
check that the assumption of a frequency independent
cosity is not at fault.

A viscoelastic solid with one relaxation time has t
frequency-dependent shear modulus and dynamic viscos

G8

Go
511

G8̀ 2Go

Go

~vto!2

11~vto!2 ~5.3!

and

h8

h 8̀
5

G9

v
511

ho82h 8̀

h 8̀

1

11~vto!2 ~5.4!

with the relaxation time

to5
ho82h 8̀

G8̀ 2Go
. ~5.5!

We fix the static shear modulus to Frenkel and Ladd’s p
dictions for a fcc crystal and the high-frequency modulus
that extracted from our measurements without accounting
the frequency dependence. If we set the low-frequency
cosity to Nunan and Keller’s prediction, no high-frequen
viscosity would fit our data. Thus the high- and low
frequency viscosities must be adjusted simultaneously to
tain a reasonable fit. Withho8 fixed, increasingh 8̀ moves the
maximum amplitude to lower frequencies and decreases
tail of the resonance. On the other hand, withh 8̀ fixed, in-
creasingho8 decreases the initial curvature, moves the ma
mum amplitude to higher frequencies, and decreases the
of the resonance. Figure 11 summarizes the high- and l
frequency viscosities obtained from the frequency-depend
model. Including the frequency dependence lowersh 8̀ a bit,
but our values still lie above measurements on the metast
fluid and slightly below the low-frequency viscosities. Non
theless, the viscoelastic solid with one relaxation time s
gests that our dispersion acts solidlike (tand;0.8) at the
resonant frequency.

The high value for the high-frequency dynamic viscos
may result from nonlinear effects; as Frithet al. @43# noted,
measurements may be in the linear regime for the stor
modulus but in the nonlinear regime for the loss modulus
our strain amplitude occurs near the maximum in the l
modulus, that would result in a higher value for the dynam
s
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viscosity. Thus, the similarity between our values forh 8̀ and
the measured values forh` ~Figs. 10 and 11! may be signifi-
cant.

VI. CONCLUSIONS

These data represent the first measurements of the
coelastic properties of nonaqueous hard sphere collo
crystals. Detecting the resonance with dynamic light scat
ing gives values of the high-frequency shear modulus of
colloidal hard spheres in quantitative agreement with pred
tions of the static shear modulus from computer simulatio
However, the high-frequency dynamic viscosity is too hig
even when frequency dependence associated with a s
relaxation time is incorporated. Though effectively in th
linear regime for the shear modulus, our measurements
be nonlinear for the loss modulus, therefore producing h
values forh 8̀ .
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FIG. 11. Including frequency-dependent rheological proper
in our model lowers the high-frequency viscosity (^ ) of our col-
loidal crystals but still seems high compared with measurement
the high-frequency viscosities for the metastable fluid~Shikata and
Pearson@6#; van der Werffet al. @7#!. ( represents the average o
the high-frequency viscosity measured in gravity and micrograv
and determined from the frequency-independent rheological p
erties, while* represents the low-frequency viscosity. See Fig.
for other symbol definitions.
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