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We present measurements of the high-frequency shear modulus and dynamic viscosity for nonaqueous hard
sphere colloidal crystals both in normal and microgravity environments. All experiments were performed on a
multipurpose PHaSE instrument. For the rheological measurements, we detect the resonant response to oscil-
latory forcing with a dynamic light scattering scheme. The resonant response for colloidal crystals formed in
normal and microgravity environments was similar, indicating that the bulk rheological properties are unaf-
fected by differing crystal structure and crystallite size within the experimental error. Our high-frequency shear
modulus seems reasonable, lying close to Frenkel and Ladd’s predifbgs. Rev. Lett59, 1169(1987)]
for the static modulus of hard sphere crystals. Our high-frequency dynamic viscosity, on the other hand, seems
high, exceeding Shikata and PeargdnRheol.38, 601(1994] and van der Werfét al's measuremen{$hys.

Rev. A 39, 795(1989] on the high-frequency dynamic viscosity for metastable fluids. The measurements are
in the linear regime for the shear modulus but may not be for the dynamic viscosity a®fFaitH Powder
Technol.51, 27 (1987)] report that the dynamic viscosity passes through a maximum with strain amplitude.
[S1063-651%99)08708-3

PACS numbd(s): 82.70.Dd, 83.50.Fc

I. INTRODUCTION should be~ 10'? times weaker. Oscillatory shear of small
amplitude slightly perturbs the microstructure and is suitable
Concentrated colloidal dispersions occur in a wide rangdor measuring the linear viscoelasticity of colloidal crystals.
of everyday products such as paper, paints, plastics, soaps, This work extends rheological measurements for colloidal
medicines, and ceramics. The simplest colloidal dispersioffystals to nonaqueous hard sphere dispersions. Similar to
consists of hard spheres, which interact through hydrodyPrevious studies on aqueous dispersions, described below,
namic and Brownian forces but feel no direct force before ar/Ve €xcite shear waves in our samples and then implement a

infinite repulsion at contact. The hard sphere phase diagrarfi®Ve! detehction scheme using dynamic r'lighF fscatter_ing to
including the disorder-order transition, has been well estap'€asure the resonant response. From that information, we

lished[1], as has the rheology in the dilute fluid phdé can extract the shear modulus and dynamic viscosity. Since

: : : no other measurements exist for nonaqueous hard spheres,
Many-body interactions, however, complicate the und_erwe compare our results with the available theory for a face-

NS ;
) . ) .~ centered cubidfcc) hard sphere crystal and measurements
in both disordered/metastable fluids and the ordered solid. on the metastable hard sphere fluid. In addition to measure-

Previous studies examined the rheological properties Uy, ants in the lab experiments were performed in micrograv-
der both steady3-5] and oscillatory sheaf6—9] for hard i on NASA sp’ace shuttle missions STS-83 and STS-94.
sphere fluids, below the freezing transition and in the metaye can therefore compare the results obtained in gravity and
stable region above. Many rheological studies also exist fofnicrogravity environments.
colloidal crystals, but focus on aqueous dispersions affected The first few sections of this work provide background on
by electrostatic forces under both stead®,11] and oscilla-  dynamic rheological measurements, resonant techniques
tory shear[12—15. The main difficulty in determining the used to determine the viscoelasticity of charged colloidal
elasticity is that colloidal crystals are orders of magnitudecrystals, and predictions of the viscoelastic properties of hard
weaker than conventional atomic solids and, thus, easily mekphere fcc crystals. We then describe our hard sphere colloi-
under shear. The weakness of the elastic forces results frogal crystals, experimental method, and theoretical model for
the low number density, which for our colloidal crystals is determining the shear modulus and dynamic viscosity from
~4 per cubic micron compared with 1 per cubic angstrom the measured resonant response. Finally, we present our re-
for atomic solids. The static elastic constants reflect the ensults and end with a discussion.
ergy density and may be estimated as the interparticle energy
times the number density. At room temperature, the interpar-
ticle energies are comparable for colloidal and atomic crys- In equilibrium, Brownian motion and the hard sphere re-
tals and, therefore, the elastic constants for colloidal crystalpulsion determine the particle distribution. A weak oscilla-

IIl. DYNAMIC RHEOLOGICAL MEASUREMENTS
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tory shear perturbs the distribution from equilibrium andfrom Kossel rings to construct a resonant curve. Jodaay
generates elastic and dissipative responses. The elasticgplved the equation of motion to obtain the resonance fre-
arises from the interparticle potential and Brownian motion,quencies and also determined that only low-frequency shear
which counteract the external flow field and tend to restorgnodes propagate in a cylinder of charged colloidal crystals.
the microstructure to equilibrium. The dissipation originatesknowing this, Dubois-Violetteet al. [17] deduced the shear
from viscous stresses in the medium surrounding the pafmodulus and dynamic viscosity from their resonant curve.
ticles and relaxation of the microstructure. Mitaku et al. [20,21] employed a slight variation on this
For small amplitude oscillations with frequenay, the technique, detecting the resonances mechanically instead of

local stress and strain are related through the complex shef[PM Kossel rings. Many investigatofd2,13,22-24 used
custom rheometers with mechanical detection schemes at a

modulus g i ' -
fixed frequency to determine the increase in the shear modu-
G*(w)=iwn*(0)=G'(w)+iG"(w), (2.1) lus of colloidal crystals with increasing concentration and
decreasing particle size and electrolyte concentration.
where 7* (w) is the complex shear viscosity a@ () and van der Vorstet al.[15,25 determined the frequency de-

G"(w) characterize the components of the stress in phasgendence of the storage and loss modulus of charged colloi-
and out of phase with the applied strain, respectively. At zeralal crystals with particle radius=2.45<x10"" m and
frequency, the stress for a fluid is completely in phase witmearest-neighbor distances, between 2. and 7.2 using a
the applied rate of strain and determines the low shear limvariety of rheometers. These measurements cover dimen-

iting viscosity 7, , sionless frequencies L{f ) 2w/D, from 1.4x<10° % to
, 1.3x10°, scaled with the Lindemann criterion at melting

lim G'(w) = 2.2 L,»=0.15 and the Stokes-Einstein diffusion coefficiény.
w0 @ o ' For (Ll n)?w/D,<0.9, the storage modulus for volume

fractions¢>0.10 is nearly constant, only increasing 10% for
Crystals have long-range positional order, which results irdimensionless frequencies from x40 * to 0.9, while the

Bragg rings and a finite static shear modutgg, loss modulus passes through a minimum and is at least an
order of magnitude smaller (tat<1.0). At higher dimen-
lim G’ (w)=G,, (2.3 sionless frequencig$or $=0.2, (Ll ) 2w/D,>9.0], the

©=0 storage modulus remains close to the static modulus but with

large error bars, while the loss modulus increases linearly
Swith frequency and eventually exceeds the storage modulus,
“as in the fluid case. The viscosity in the high-frequency limit
is approximately the medium viscosity. Scaling their results
@nd others for the static shear modulus with volume fraction,
i particle radius, surface charge density, and electrolyte con-
tively, centration yields a master curve with some scatter. Storage
and loss moduli of Blonet al.[26] follow similar trends, but

which vanishes at the melting transition. These features di
tinguish crystals from fluids, which have no long-range po
sitional order. In the high-frequency limit, the in- and out-of-
phase components give the high-frequency dynami
viscosity 7., and high-frequency shear modul@s, , respec-

lim G'(w) =7, (2.4  indicate a stronger frequency dependence for the storage
PRI () modulus.

Palberget al.[27] accurately AG=<2%) and nondestruc-
limG'(w)=G,,. (2.5)  tively determined the shear modulus of charged colloidal
w—® crystals by detecting resonant shear oscillations with time-

resolved static light scattering. With transparent samples,
PresumablyG,, and 7., both diverge for monodisperse they determined the morphology and then placed a position-
spheres at close packingb¢0.74). The loss tangent t#h  sensitive detector on part of a Bragg ring and measured the
=G"/G’" shows the transition from viscous (t&r1) to  change in Bragg angle due to the distortion of the lattice. For

elastic (tans<1) behavior. small-amplitude oscillations, the periodic distortion of the
lattice spacing reflects the response of the crystallite to the
A. Rheology of charged colloidal crystals forcing. They found the shear modulus to be sensitive to

. . . . . different bcc crystal morphologies; at 0mmol/l salt, G’
Previous studies on the viscoelasticity of colloidal crystals_ 0.34 Pa for an unoriented polycrysta, =0.30 Pa for

C?mer on aqueous polystyrene lattices. Qrderlng of aqueous, noriented polycrystalline core with twinned monocrystal
dispersions depends on the number density, particle size, and

. : uter annulus, an@’=0.23 Pa for an oriented polycrystal.
electrolyte concentration. One of the first measurements . - . )
. . Theories based on electrostatic interactions agree with mea-
the bulk modulus of colloidal crystals by Crandall and Wil- : .
. - . surements of the shear moduli of these colloidal crystals by
liams[16] detected the gravitational compression of the crys- . .
, . X ; . . the various resonant techniqugx8—30. Thus, understand-
tal lattice as a function of height for dilute dispersions by. L : .
| , ing of the elasticity of charged colloidal crystals is well ad-
Bragg scattering and extracted Young's modulus. Because o
. . A vanced.
the extremely long time required to reach equilibrium for
gravitational compression and the desire to determine the
shear modulus rather than the bulk modulus, other groups
[17,18 excited standing shear waves in a cylinder filled with  Predictions of the viscoelasticity of hard sphere crystals

opaque dispersions and detected the amplitude and phasee limited. Frenkel and Ladd1] computed the static elas-

B. Theory on rheology of hard sphere colloidal crystals
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tic constantsC;; from molecular-dynamics simulations of from dynamic light scattering on a dilute sample is 2
slightly distorted unit cells at several concentrations and then- 655+ 15 nm. Previous measurements of the equation of

averaged over all orientations to obtain the static sheagiate demonstrate them to be near hard sphiéswith the

modulus for an isotropic polycrystalline solid, effective hard sphere size determined by matching the ob-
1 served disorder-order transition to the hard sphere freezing
Go=§[C11— C1o1+3Cy4l- (2.6)  transition. Polydispersity affects the freezing transitigh],

but the error in determining the concentratioch@.007) ex-

Nunan and Kelle[32] calculated the effective viscosity C€€dS the correction for the 5% polydispersity of our
of periodic arrays of spheres in an incompressible Newtoniag@MpPles. Thus, the effective volume fractions reported here
fluid with viscosity «. For a cubic lattice, the effective vis- 90 not include the correction for polydispersity.
cosity tensor involves just two parametessand 3, which Index matching does not lead to density matching; the
are functions of concentration and the lattice geometry. Théesulting sedimentation can affect both the structure and size
orientational averaged effective viscosity, which correspond®f the crystalliteq 36]. Face-centered cubigcc) is entropi-
to the high-frequency limit for a perfect crystal, follows as cally favored over hexagonal close packifigp), a conclu-

sion advanced by Woodco¢RB7] on the basis of simulations

and confirmed by Bolhuigt al. [38] through further analy-
' (2.7 sis, Under normal gravity, hard sphere dispersions crystallize

into a mixture of hcp and fcc packing with a bias towards fcc
Our particles undergo Brownian fluctuations about the latticd39], whereas under microgravity, only random hexagonal
point, whereas Nunan and Keller assumed the particles to belose packing(rhcp structure has been detectg86]. The
fixed on the lattice, reducing the radial distribution functionstructural difference may result from gravity-induced
g(r) at contact to zero. As evidenced by the osmotic presstresses. In addition, samples in the coexistence region under
sure, which is proportional tg(r) at contact, a significant microgravity form larger crystallites than in normal gravity
number of nearest-neighbor interactions exist, implying thaind also exhibit dendritic growtf#0]. Both crystal structure
Eq. (2.7 should represent a lower bound @1 for a colloi-  and crystallite size may affect the rheological properties, mo-
dal crystal. tivating a comparison of results obtained in normal and mi-

crogravity environments.

1
1+ =(2a+38)

r_

Ill. RESONANT BEHAVIOR
o ) o _ B. Experimental setup
Similar to the investigations on charged colloidal crystals, _ ) . -
we exploit resonant behavior to determine both the shear A Multipurpose light scattering instrument shown in Fig.

modulus and dynamic viscosity of our hard sphere colloidatt WS designed by NASA Lewis Research Center, ADF Cor-
crystals. Our dispersions have inertitensity, damping(dy- por_atlon_, NYMA Corporgtlon, Titan Spectron, and I?rmceton
namic viscosity, and recoveryshear modulus the combi- University for the _Phy5|cs of Hard Sphere Expc_anments or
nation of which governs the amplitude of the response reIaPHa_SE_[41]' This Instrument perfor_ms both static and dy-
tive to the amplitude of the forcing. For a small dynamic N&mic light scattering and also oscillates the sample for de-

viscosity, the amplitude of the response becomes large at §Mining the rheological properties. Specially designed
series of discretéresonantfrequencies and characterization 9SS sample cells, whose refractive indem=(1.511)

of the first resonance suffices to determine the dynamic visnatches that of our PMMA-PHSA suspensions, consist of
cosity and shear modulus. Instead of measuring the chand&© Pi€ces, a face plate and a hemispherical cap. The cap has
in the Bragg angle as Palbeeg al. [27] did or determining @ parabolic sk|(t and a cyllnd_rlcal cavity, 1.0 cm in radius
the amplitude and phase from Kossel rings as did Dubois@"d 1.0 cm high, that requires approximately 3 mL of
Violette et al. [17] and Joanicoeet al. [18], we detect the sample. The face plate is screwed into the cap to seal the

resonant response with dynamic light scattering, since th§2MPle. To allow for expansion and contraction due to tem-
decay of the autocorrelation function also reflects the ampliPerature fluctuations, we incorporate a rubber diaphragm in
tude of the response. the sample cell. All surfaces of the sample cell are highly

polished and coated with antireflective material.
A 100 mW Adlas diode laser Model DPY 313ll supplies
A. PMMA-PHSA spheres aA=532 nm green beam, which is split into two, one for
Ottewill and his group at the University of Bristol synthe- static light scattering and the other for dynamic. Each beam
sized and graciously supplied samples of pehethyl meth-  is routed with Newport mirrors and holders into single mode,
acrylatg (PMMA) spheres with a grafted comblike layer of polarization maintainingdPM) fiber optic cables terminated
poly-(12-hydroxy stearic acid(PHSA) chains that we dis- on both ends with a quarter-pitch gradient indgRIN)
persed in a refractive index matching mixture of 1,2,3,4-lens. The GRIN lens restricts tHevector of the collected
tetrahydronapthalendtetralin, n=1.541) and 1,2,3,4is light and focuses the beam to a 1Q0m Gaussian waist. The
decahydronapthalenédecalin, n=1.4815). Tetralin is a static launch fiber couples with a collimator that delivers a
good solvent for PMMA and swells the particles, signifi- wide beam axially through the sample cell’s face plate. The
cantly increasing the sizg33]. Index matching suppresses diffracted intensity from the sample is focused without dis-
the van der Waals forces and is necessary for performingprtion by the hemispherical cap onto a fluorescently coated
light scattering, but the associated swelling increases the e$pherical screen. A high-resolution charge coupled device
fective hard sphere volume fractief The particle diameter (CCD) captures a 10321312 pixel black and white image
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pick-up fibers strumen_t. This instrL_lment performs sta_tic and dy-
t - === namic light scattering and also oscillates the
( static sample cell sinusoidally to determine the rheol-
|auﬂch‘dﬁbéf ogy. The thick black and gray lines refer to the
S —— dynamic and static laser beams, respectively
iz & (—, incident beam;- — —, scattered beam
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of the screen containing 2D diffraction images from 0.5 ° tothe only displacement excited by this oscillatory shear is in
60 °. For a crystal, the intensity will constructively interfere the azimuthal o direction, i.e.,u,, and pressure gradients
and result in Bragg rings with positions and intensities thatare zero, leaving

reflect the crystal structure. 5 5

The dynamic launch fiber is mounted on a precision stage TY _(ary 2|2 1 ‘?(”'0)) 49U
for directing the beam onto the parabolic skirt and through Pz ~ Tat) o\t ar
the center of the cell. The beam is totally internally reflected
from the skirt radially through the sample; therefore, thewherep is the dispersion density,is the time, and andz
beam from the dynamic launch fiber is perpendicular to tha@re the radial and axial positions within the cylinder. This
from the Bragg launch fiber. The two single-mode pick-upbalance between inertia and mechanical stresses determines
fibers, 180° apart, are attached to a motorized stage, allowiri§e propagation of motion into the sample from the bound-
the scattered intensity to be collected at angies10° aries, which rotate as a rigid body. In the low-frequency limit
—169° with 0.1° resolution. A supersensitive avalancheone expects solid body rotation of the entire sample, while at
photodiode detectofAPD) converts the scattered intensity Very high frequency inertia should maintain the bulk of the
into binary data from which two Brookhaven BI9000 cor- sample at rest with deformation confined to boundary layers
relators compute autocorrelation functions. near the container walls.

The sample cell is mounted into a circular holder, whose To simplify the analysis, we subtract the solid body rota-
outer edge has ridges that grip a rubber belt that also hudg#n from the actual displaceLnent and separate the oscillatory
the gear of a PMI ServoDisc dc motor. The motor transmitsdependence on time ag,=(u,R+ yr)e'“!, so that the no-
sinusoidal oscillations at frequencies between 0.2 and 5 Hglip boundary conditions at the container walls will be ho-

to the sample cell through the rubber belt. Because ougogeneous fou,. The behavior then depends on the dimen-

samples crystallize and, thus, are nonergodic, we ensemblgi'onless positionr_=r/R andz=7/R. the reduced frequency
average by rotating the cell slowly<(1° in a minute ' '

through many configurations.
Q=wR\/ (3.2
G/

C. Viscoelastic solid cylinder in oscillatory shear

_ Our_rhe_ologi(_:al _measurement iS nonviscometric, i_mposv[he reduced viscosity

ing periodic oscillations on the sample cell and detecting the

response that propagates through the viscoelastic medium to /
the center of the cell. Hence the measured response must be (= U ,
compared with predictions from a faithful model in order to RyVpG’

identify the shear modulu&’ and dynamic viscosityn'.

This requires solving the equations of motion for a viscoelasand a convenient combination of the two,
tic solid contained in a circular cylinder of radi® and

heightL that rotates periodically with frequeneay and am- o= / 0° (3.4
plitude y about its axis. In standard cylindrical coordinates, 1+iZQ° '

(3.3
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The dimensionless, time-independent equationTmr b——— 77—
1&(ru(,) 22u,
s 77) Tarl\v o 9z*

is subject to the no-slip and symmetry boundary conditions

at z=0, u,=0,

at z=h, u,=0,

at r=1, u,=0,

B B 0 2 4 6 8 10 12
at r=0, u,=0,
FIG. 2. Typical response to oscillatory shear from model with
whereh=L/R is the aspect ratio of the container. frequency-independent rheological properties vs driving frequency
We separate variables atr=0, h=1.0, andZ=0.10.
Uo:nil R.(NZy(2), (3.6 A more convenient form results from the identity

— < 20°3(Tr) _Ji(oT)
reducing the partial differential equation to two ordinary dif- r+r121 N 3,(T)  Jy(o) (3.12
ferential equations, and obtain first-order Bessel functions of ntnmzitn
the first and second kind fd®,(r) and hyperbolic functions g

for Z,,(z) with

_ _ _ ug Jalor) i 2023,(T,r) [ (coshh ;h—1) NG
Ra(r)=Andy(Tor)+B,Y(Tr). BD R T 2 NZT,3,(Ty) | sinhagh sinh\ nz
The third and fourth boundary conditions yie8},=0 and
J1(I'))=0 and orthogonormality yields the homogeneous —cosh)\ﬂ tot, (3.13
eigenfunction

We measure the amplltude of angular rotation at the cen-

2 _
Ro(N) =~ 3, Ja(Tpr). (3.8 ter of the cylinder (=0, z=h/2),
Solving thez-dependent ODE, . 1 duy o - a?
A elth__: —
. . R . (@) y ar | 2J1(0) nzl N23,(T,)
S TR, _:2 1-&14&
n=1 9z n=1 ar\ ar r L
_ i wt
—a2yr2, (3.9 X hl|€ (3.19
cosh)\nz

by expanding the nhonhomogeneous term in the eigenfunc-
tionsR,, and applying the first two boundary conditions leads

to with resonances defined by maxima M Fig. 2 shows a

typical response for a gived, indicating three important

- characteristics of the first resonance, the amplitdgeposi-
= \/—U ’ ( 1-cosh\,z M sinh\ j tion 4, and the width at half heightv;. The typical dimen-
i sinhqh sionless viscosity measured for our hard sphere crystals in-

(3.10 dicates ¢=0.10, which suppresses the higher-order
_ 5 resonances. The width is calculated relative to the maximum
with Ny =T’y — 0" , amplitude minus onéan arbitrary baselineKnowing two of
Combining ther-dependent and-dependent solutions re- these three characteristics specifies the shear modulus and
sults in the full solution dynamic viscosity of the dispersion.
- 5 — In Fig. 3, we plot the amplitude, position, and width of the
ﬁ=r_e“”‘+ D 20°34(T'r) 1— coshh.z first resonance for the finite cylindeh£1.0) as a function
YR n=1 )\ﬁFnJZ(Fn) of dimensionless viscosity. As expected, the amplitude of the
first resonance decreases with increasing viscosity, while the
(Cosm”h_l)sinh)\ Sl eiot (3.19) position passes through a maximum and decreases and the
sinhA,h ' ' width broadens. The extrema result from the second reso-
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static

i 1 1E-5 1E-4 1E-3 001 0.1 1 10

ot . 1 . 1 . 1 . 1 . 7[s]
0.0 0.2 04 0.6 0.8 1.0
g FIG. 4. A comparison of the autocorrelation function with forc-

ing at various frequencies{—, 0 Hz; 1, 0.4 Hz; O, 0.6 Hz; A,
FIG. 3. The amplitude, position, and width at half peak height ofg.8 Hz: vV, 1.0 Hz: ¢, 2.0 Hz: +, 3.0 Hz; X, 4.0 Hz: and *, 5.0
the first resonance \& for finite cylinder of a viscoelastic solid in - Hz). Note that the slow relaxation of the sample cannot significantly
oscillatory shear at=0 andh=1.0. affect the rheological measurements.

nance merging with the first, which prevents some values for \ye measure the displacement of particles rotating with
the width from being obtained. the fluid along with the normal Brownian fluctuatiorf§7),

IV. DYNAMIC LIGHT SCATTERING

1 N
In dynamic light scattering, the detector measures the in- 9:(q,7) = NS(q) i]z:o (explig-[ri(0)—ri(7)

stantaneous scattered intendify,t) =E(q,t)E*(q,t), with '

E(q,t) the scattered electric field aril (q,t) its complex —A(w)sinwreXri(0)]}). (4.5
conjugate, of a single fluctuating speckle at a wave vector of

magnitude If the sample were a rigid solid with’=r,(0) and A

4w 0 =1, gi(g,7) would be completely correlated at the inverse
q= —sin. (4.1  of the driving frequency owr=27 and would follow the
A 2 shape of the forcing, i.e., sinusoidal. Since our sample fluc-

. . . .tuates and deforms and we ensemble-average by superimpos-
A correlator accumulates the intensity over short time peri- ge by sup P

. . . ing a slow rotation onto the oscillation, crystallites return
ods and constructs a normalized scattered intensity autoco&Ose but not exactly to their original positions after one
relation function

oscillation andg,(q,27w/w)<1. The rates of diffusion and
(1(9,01(q,7)) steady rotation for ensemble averaging are much slower than
0,(0,7)=—F 7, (4.2  the oscillations and, therefore, affect the primary decay as
(1(a.0)) shown in Fig. 4 very little. At times 70- 10° longer where

where the angular brackets represent an ensemble averaggd= 27 the peak representing the completion of a full os-

and 7 the delay time. To explicitly relatg,(q,7) to particle Cillation is evident in Fig. ) lbut is_highly a_tten_uated by
positionsri(t), we invoke the Siegert relationship these processes. Thus our primary interest lies in the decor-

relation of the signal by rotation at short times for which
92(q,7)=1+Cg¥(q,7), 4.3 A(w)sinwwA(w)m>>|rjd(r)—ri(0)|/|rj(0)|, so that contri-
butions from Brownian motion and ensemble averaging can
whereC=0(1) is an apparatus constant related to the ratithe ignored.
of the detector and coherence areas. The normalized scat- For small-amplitude oscillations, the intensity at a Bragg
tered electric field autocorrelation functian(qg,7) or the  angle is essentially constant. The Bragg reflection dominates

coherent intermediate scattering function is given by the autocorrelation function at this angle and suppresses the
. decay due to oscillatory shear. Off a Bragg angle, we can

91(q T):<E(q,O)E (9,7) determine the decay of the autocorrelation function due to

' (1(q,0)) the sample response, though the intensity is much weaker.

L N Therefore, we measure the autocorrelation function at differ-
_ . ent driving frequencies at a scattering angle just off the main
"~ NS(q) i,,zzl (expliq-[ri(0)=ri(n1}) (4.9 Bragg peak and plot versusr to determine the dependence

of the rate of decay on frequency. The detector views the
with S(q) the static structure factor. The indices recognize acenter of the sample, sensing the motion propagated inward
potential coupling between particlesindj directly through  from the boundaries and, therefore, the bulk rheological
the particle pair potential and indirectly through hydrody- properties of the whole sample. Table | summarizes the con-
namic interactions. centrations and phases of our samples.
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T T T 35 T T T T T T T T T T T T
1O (a) |
3.0
E\ 038 -
\;g 25
o 06
,qﬂ) <2.0 [
Té 04 L5
g 0.2 1.0
05
0.0 |
L 00L .
T ow[rad/s]
\ FIG. 6. Resonant response of sample 4 STS-94 at various angles
LOS under gravity {/, KSC, #=15°) and microgravity [J, STS-94,6
=15°; O, STS-94,0=30°; A, STS-83,0=15°) vs driving
% 0.8 frequency compared with the frequency-independent model with
= =0, h=1.0, and¢=0.135 ().
= 06
f@ autocorrelation functions, e.g., in Fig(&, via two simple
S 04 steps. The first step is to superimpose the correlation func-
g tions for each frequency; with t>0 onto that for the lowest
< 02 frequencyw, by plotting versusA (w;) w; 7/ A (w,) with the
scale factorA (w;)/A (w,) chosen for this purpose. Since the
0.0 decay at the two lowest frequencies is a bit broader than the
\ \ . . others [cf. the curves that fall below the other for
1E-4 1E-3 0.01 0.1 1 10 A(wj) w;71A(0,)<0.01], we force the collapse ag,—1
A(@ot/A(w) =0.5 [Fig. 5b)]. The second and final step is to select

. . o ) A(w,), G', andn’ to obtain the best possible superposition
FIG. 5. Autocorrelation functions at driving frequencies be- A(w) versuse from the measurements with the predic-
tween Q.4 to_5.0 Hz in increments of 0.2 Hz are pl_otted with thetions from Eq.(3.14. This is relatively straightforward, be-
delay time either not scale@) or scaled(b) to superimpose the cause the resonance frequency primarily determines the

responses of sample 4 STS-836at 15° to oscillatory shear. Note . . . ;
that the decay at the two lowest frequencigs 0.4 Hz:O, 0.6 H2 modulus W_lth t_he ar_nplltude or width of the resonance setting
the dynamic viscosity.

is a bit broader than the others, which form a master curve after . .
The response of sample 4 as a function of driving fre-

scaling the delay time. - . .
quency shown in Fig. 6 for measurements in normal gravity
and microgravity environments clearly exhibits the result of
this process. The resonance at 12.5 rad/s suggésts
The arguments above lead us to expect the autocorrelatior p(12.5R/5.1)°=0.56 Pa from(3.2) and Fig. 3, while the
function to decay monotonically with (o) o 7, whereA () peak amplitude of 3.3 indicates a dynamic viscosityzof
is the frequency-dependent amplitude of rotation in the scat=0.12R\/pG’=0.027 Pas from Eq(3.3) and Fig. 3. The
tering volume, i.e., the center of the cell, that reflects thefinal values result from adjusting these estimates to better fit
viscoelastic properties of the crystal as illustrated by Eqthe full curve. Note that in Fig. 6 the theoretical model de-
(3.14). To deduce these properties from the measuremerscribes the full experimental curve fairly well and samples
requires extracting\ (w) from the decay in the normalized crystallized under gravity exhibit the same resonance as the

V. RESULTS

TABLE I. Sample descriptions and results for the high-frequency shear modulus and dynamic viscosity in
both normal and microgravity environments.

Gravity Microgravity
Sample ) Phase GLa%/kT am GLa%kT am
2 0.505 coexistence 331.0 14.13.0
3 0.528 coexistence 441.0 15.6-3.9
4 0.552 crystal 5.80.8 18.8-5.8 5.8:0.8 18.8-4.3
5 0.575 crystal 9.83.0 24.5:7.9 9.4:2.0 24.1+5.2
6 0.599 crystal 11.63.6 28.8:15
7 0.622 near glassy 18+16.0 44.5-20
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microgravity samples, suggesting that the crystal structure R A AL L
and crystallite size do not affect the bulk rheological proper- 0.10
ties beyond the experimental error.

The model treats the crystal as a linear viscoelastic solid 0.08
with constant viscosity and modulus, whereas nonlinearity I
often sets in at relatively low strains and even crystals ex- 20,06
hibit relaxations that cause the moduli to vary with fre-
guency. Thus before analyzing the rheological properties, we
need to assess the linearity and the frequency regime of our
measurements.

0.04

0.02

A. Linear regime 0.00

For most viscoelastic materials, the response becomes
nonlinear above a strain amplituég beyond which the stor-
age modulus generally decreases. Belgw in the linear
regime, Brownian fluctuations can restore the crystal struc- F!G. 7. The frequency dependence of the stre(R) with £
ture, energy is stored, and the storage modulus remains cof0-138 _at the container wall for sample 4 ST$-94 oscillating with
stant at a fixed frequency. Abowe, the crystal structure is an amplitude of+1.5° shows the greatest strain near the resonant
deformed plastically, energy is dissipated, and the storagl€auency:

modulus decreases. . - . . .
to have increased order, yielding higher intensity Bragg

Shikata and Pearson, Jones, and Feitlal. all checked ks af h ibly d h i
linearity on metastable hard sphere fluids. Shikata and Pea'?—eea:ltS after the measurement, possibly due to shear align-

son[6] report a linear response fer,<0.1 for their disor-
dered dispersions of 12—450 nm diameter silica in glycerol
and ethylene glycol mixtures fap=0.32—0.56. Jonegt al. B. High-frequency regime
[42] performed measurements on 49 nm diameter silica |n an oscillatory shear, the frequency scales with the
spheres in high boiling hydrocarbon medium and foupd  short-time self-diffusion coefficientDd(¢) because, for
=0.03 for $=0.586-0.667. For 475 nm PMMA-PHSA in gma|| departures from equilibrium, particles need only dif-
decalin, Frithet al. [43] determined thate;=0.003 for ¢  fyse a distance small relative to the lattice spacing to relax
=0.624 and 0.02 forp=0.595, indicating tha. decreases pack to equilibrium. For fluid phaseB? decreases with con-
with increasing concentration. They also noted that nonlingantration from the Stokes-Einstein valDg at infinite dilu-
earity first becomes apparent in t.he loss modulus rgther thakbn. ottewill and Williams[44] employed 170 nm diameter
the storage modulus, witB” passing through a maximum. q\v(vinyl acetat¢ spheres as tracers for 166 nm diameter
Our instrument imposed oscillations at a fixed amplitudeppipma-PHSA spheres in a mixture dfis/transdecalin to
of 1.5° _(y~Q.026). With the known shear modulus and dy- fq D9(0.50)D,=0.20 and D2(0.55)D,=0.15 for the
namic viscosity, we calculate the strain, metastable fluid. Particles ordered onto a crystal lattice are
au, u9> more free to fluctuate than in a disordered fluid,Bdof a

o T (5.1 crystal should exceed that of a metastable fluid at a fixed

concentration. The dimensionless frequencypat0.55 and
w,=4m radls, a’w,/D2($)~27, suggests that the mea-
at the resonant frequency for sample 4 and find that theurements lie near or in the high-frequency regime. Alterna-
greatest strain occurs at the wall. The strain at the wall vsively, assuming
frequency plotted in Fig. 7 for the same sample reaches a
maximum strain near the resonance frequency and does not D2(¢) u
exceed 0.10. Thus our measurements fall in the linear regime D. (&) (5.2

. . . . (o] 7’30(¢)
according to Shikata and Pearson’s criterion but not Jones or
Frith et al’s measurements. Fritt al. may be the best com- for the crystal, which is not precise but is at least within a
parison because their particles most closely resemble ourfactor of 2, and employing the high-frequency viscosities of
but a crystal should tolerate greater strains than a disorderequnan and Keller(1984 determines a lower bound of
fluid before deforming plastically. Therefore, the critical (2w, /Do) (7Ll w)~22, just slightly less than the dimen-
strain for the fluid only represents a lower limit for the crys- gjgniess frequency determined with the short-time self-
tal. diffusion coefficient. Thus, we cannot access the low-

We do not perform a direct linearity check, but insteadfrequency regime because of our large particle size.
take Bragg images before and after the rheology measure-

ment(Fig. 8). In the linear region, the oscillatory shear mode
is nondestructive. The angular averaged Bragg images for
samples 3, 4, and 5 from STS-94 before and after the rheol- For hard spheres the dimensionless shear moduli, scaled
ogy measurement are almost identical, suggesting that then the thermal energy density &a®kT, should depend
measurement did not affect the structure of the suspensioonly on ¢ and the dimensionless frequenayw/D,. Our

and was in the linear regime. In fact, samples 4 and 5 seemlastic moduliG’ (Fig. 9 and Table)lare comparable to the

e(r)y=vy

C. Shear moduli
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= 1500f . FIG. 9. The shear moduli of our colloidal crystals measured in
E‘ X gravity (O) and microgravity @) and determined with frequency-
£ 1000 i independent rheological properties compared with measurements
) ‘e and theory for the high-frequency moduli of the metastable fluid
.E sl M (A, Shikata and Pearsdf]; — — —, Lionberger and Russé45]),
~ ﬂ,ﬁf and Frenkel and Ladd’s predictigf81], —) for the static moduli

0 . . . . . . of a fcc crystal.
— (¢) D. Dynamic viscosity

150} ] L : : .

‘é ZZX The dynamic viscosity scaled by the solvent viscogity
= (Fig. 10 and Table)lincreases from about 14 to 44.5 for
E‘ 100l i 0.505< ¢=0.622. Our earlier estimates suggest the measure-
E=] ments to be in the high-frequency limit. Therefore, we in-
2 clude for comparison the high-frequency viscosities for a
E 50t . perfect fcc hard sphere crystal, calculated by Nunan and
=~ Keller [32], and a disordered metastable hard sphere fluid,

o measured by Shikata and Pear¢6hand van der Werfet

35 36 37 38 39 40 4 % al. [7]. Brownian motion of particles about the lattice sites in
O[degrees] our crystals causes closer interactions and should increase
g the viscosity above the lower bound set by the perfect crys-

FIG. 8. Bragg scattering from samplesa, 4 (b), and 5(c) on tal, but not above the value for the disordered fluid. The

STS-94 remains nearly the same befate) (during (O), and after
(V) the rheological measurement, suggesting that the rheological 10 ————7——7——7——T1—
properties are obtained in the linear regime.

static shear moduli calculated by Frenkel and LE®i for a - .\ X
fcc crystal and well below the high-frequency moduli from -

Lionberger and Russel's nonequilibrium thed®5] and . 3 i
Shikata and Pearson’s measuremeégisfor the metastable x
fluid. The static modulus is an equilibrium property that is

unaffected by hydrodynamic interactions, unlike the high- 10F v 2 v 4 .
frequency modulus, which measures the instantaneous re-
sponse to a strain. Both hydrodynamic interactions and the
nonequilibrium structure cause the high-frequency modulus

to always exceed the static modulus. Our results seem rea- T YD)
sonable, as they lie between the static modulus for a fcc

crystal and the high-frequency modulus for the metastable

fluid. While our moduli lie just slightly above Frenkel and FIG. 10. The dynamic viscosity of our colloidal crystals mea-

Ladd’s predictions, the difference is not necessarily signifi-Sured in gravity ©) and microgravity @) determined with

cant as indicated by the error bars. Thus, our results agrd&duency-independent rheological properties compared with mea-

o . , surements of the high sheat ( van der Werff and de Kruif4]; X,
qualitatively with van der Vorset al’s [15,25 measure- Woods and Kriegef46]) and high-frequency.t, Shikata and Pear-

ments on aqgeous latex dispersions in nOt.deV'at'.ng rnuclQon[6]; V, van der Werffet al. [7]) viscosities for the metastable
from the static modulus, though at a relatively high fre-fi,ig and Nunan and Keller's theorf32], —) for the effective
quency. viscosity of an unstrained fcc crystal.

nu
o
%
X,
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coincidence between our data and the high shear viscosities 10 ————7——T—— 71—
for disordered hard sphere fluids measured by van der Werff [
and de Kruif[4] and Woods and Kriegd6] suggests that [ + ]
nonlinearity might be the culprit. However, we should first I X ; )
check that the assumption of a frequency independent vis- I + Z

cosity is not at fault. X

A viscoelastic solid with one relaxation time has the [ {

frequency-dependent shear modulus and dynamic viscosity,

iy
X 0
*
&0
X
*
g—do
X

10_— A

G’ G.—G, (w,)? A
_ o ( o) , (5'3) i vV v
G, G, 1+(wry) i

and ) I T T T S T

’ " P
n G o™ 7= 1 (5.4) FIG. 11. Including frequency-dependent rheological properties
7, © 7. 1+ (wTo)2 in our model lowers the high-frequency viscosity X of our col-
loidal crystals but still seems high compared with measurements of
with the relaxation time the high-frequency viscosities for the metastable fl@tikata and
Pearsor{6]; van der Werffet al.[7]). © represents the average of
n—7 the high-frequency viscosity measured in gravity and microgravity
To:¥- (5.5 and determined from the frequency-independent rheological prop-
G.—G, erties, while© represents the low-frequency viscosity. See Fig. 10

. . for other symbol definitions.
We fix the static shear modulus to Frenkel and Ladd’s pre-

dictions for a fcc crystal and the high-frequency modulus toviscosity. Thus, the similarity between our values #grand

that extracted from our measurements without accounting fothe measured values fat,, (Figs. 10 and 1llmay be signifi-

the frequency dependence. If we set the low-frequency viseant.

cosity to Nunan and Keller's prediction, no high-frequency

viscosity would fit our data. Thus the high- and low- VI. CONCLUSIONS

frequency viscosities must be adjusted simultaneously t0 0b- These data represent the first measurements of the vis-
tain a reasonable fit. Withy, fixed, increasingy.. moves the  coelastic properties of nonaqueous hard sphere colloidal
maximum amplitude to lower frequencies and decreases thgrystals. Detecting the resonance with dynamic light scatter-
tail of the resonance. On the other hand, with fixed, in-  ing gives values of the high-frequency shear modulus of our
creasingn, decreases the initial curvature, moves the maxi<olloidal hard spheres in quantitative agreement with predic-
mum amplitude to higher frequencies, and decreases the tdipns of the static shear modulus from computer simulations.
of the resonance. Figure 11 summarizes the high- and lowHowever, the high-frequency dynamic viscosity is too high,
frequency viscosities obtained from the frequency-dependeriven when frequency dependence associated with a single
model. Including the frequency dependence lowgfsa bit, r_elaxatlon_ time is incorporated. Though effectively in the
but our values still lie above measurements on the metastabje'€3f '€dime for the shear modulus, our measurements may
fluid and slightly below the low-frequency viscosities. None- € nonhnea,r for the loss modulus, therefore producing high
theless, the viscoelastic solid with one relaxation time sugyalues forn...
gests that our dispersion acts solidlike (&n0.8) at the
resonant frequency.

The high value for the high-frequency dynamic viscosity We would like to thank the PHaSE team at NASA Lewis
may result from nonlinear effects; as Frighal. [43] noted, Research Center in Cleveland, OH for their work on the
measurements may be in the linear regime for the storag@strument, and Sal Torquato for his help in determining the
modulus but in the nonlinear regime for the loss modulus. lforientationally averaged modulus. This research was funded
our strain amplitude occurs near the maximum in the losdy a NASA grant(No. NAG 3-1762 and the Graduate Stu-
modulus, that would result in a higher value for the dynamicdent Researchers Program.
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